Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 22, 2026
-
Free, publicly-accessible full text available March 31, 2026
-
Classification is an important statistical tool that has increased its importance since the emergence of the data science revolution. However, a training data set that does not capture all underlying population subgroups (or clusters) will result in biased estimates or misclassification. In this paper, we introduce a statistical and computational solution to a possible bias in classification when implemented on estimated population clusters. An unseen-cluster problem denotes the case in which the training data does not contain all underlying clusters in the population. Such a scenario may occur due to various reasons, such as sampling errors, selection bias, or emerging and disappearing population clusters. Once an unseen-cluster problem occurs, a testing observation will be misclassified because a classification rule based on the sample cannot capture a cluster not observed in the training data (sample). To overcome such issues, we suggest a two-stage classification method to ameliorate the unseen-cluster problem in classification. We suggest a test to identify the unseen-cluster problem and demonstrate the performance of the two-stage tailored classifier using simulations and a public data example.more » « less
-
We consider the problem of classifying curves when they are observed only partially on their parameter domains. We propose computational methods for (i) completion of partially observed curves; (ii) assessment of completion variability through a nonparametric multiple imputation procedure; (iii) development of nearest neighbor classifiers compatible with the completion techniques. Our contributions are founded on exploiting the geometric notion of shape of a curve, defined as those aspects of a curve that remain unchanged under translations, rotations and reparameterizations. Explicit incorporation of shape information into the computational methods plays the dual role of limiting the set of all possible completions of a curve to those with similar shape while simultaneously enabling more efficient use of training data in the classifier through shape-informed neighborhoods. Our methods are then used for taxonomic classification of partially observed curves arising from images of fossilized Bovidae teeth, obtained from a novel anthropological application concerning paleoenvironmental reconstruction.more » « less
An official website of the United States government
